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a b s t r a c t

Patterns were generated inside a horizontal cylinder rotating at low speeds. The cylinder was filled with a
very low volume liquid fraction of 1.8% of Newtonian fluid and the rotation speed ranged between 0.08
and 5.2 s�1. A novel laser-plane technique was utilized to obtain time series from each pattern. This
enabled the characterization of fluid patterns using Fourier spectral (FS) and dynamical-systems (chaotic)
techniques such as the recurrence map, correlation dimension (D2) and Hurst exponent (H). Four patterns
were found (fingers, furrows, waterfall and smooth tooth) before annular flow was reached. The results
indicate that the FS technique not is suitable for flow pattern characterization; and H only has the ability
to indicate a possible pattern change. The best tool for indicating the pattern transitions and the inner
coat liquid evolution was found to be recurrence maps and D2.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The evolution of a thin liquid coating on or inside a right circu-
lar cylinder that is undergoing rotation about a horizontal axis is
called rimming flow [1]. A cylinder undergoing uniform rotation
is able to hold a thin coating of liquid, due to the combined effects
of liquid viscosity and cylinder rotation. In general, however, the
coating on a long right circular cylinder may be subject to instabil-
ity due to the action of surface tension at the liquid–air interface
and centripetal acceleration [2]. The analysis of this problem re-
quires an understanding of the interplay between gravitational,
rotational and surface tension effects on the coating.

This type of flow has many industrial applications: in the paper
industry (the Fourdrinier machine), the roller-coating industry
(photographic films, aluminum foils), and in liquid degassers, li-
quid cooling of turbine shafts, etc. Further numerous topics in ap-
plied engineering science are noted by Karapantsios et al. [3],
Benkreira et al. [4], and Wilhelmsson et al. [5]. In industry the
low liquid volume fractions (1–5%) are very important, especially
in the pharmaceutical industry in which the coating provides a
sustained release barrier for drug transport. In these systems the
coating variability has a strong dependency on surface velocity of
a rotating drum, and recent studies reveled that a uniform flow
is reached for high rotation speeds Sandadi et al. [6]. In the present
ll rights reserved.
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paper, we focus on the flow patterns observed at low liquid volume
fraction and using a Newtonian fluid. In this regime, Vallette et al.
[7] realized experiments using a glass cylinder of radius R0 = 5 cm,
length L = 50 cm and partially filled with silicone oil (l = 10 cS)
using filling fractions of A = 1–4% (where A = 100VL/VT, with VL,VT

being the fluid and cylinder volume respectively). They investi-
gated the bifurcations to time-dependent and chaotic one-dimen-
sional fluid fronts inside the horizontal rotating tube. A primary
cellular pattern undergoes a variety of secondary transitions,
depending on the filling fraction. Chen et al. [8] indicated that no
information was available for rimming flow for liquid volume frac-
tions less than 2%, despite its industrial importance. Chen et al. [8]
used Newtonian solutions of glycerol and polyvinyl alcohol (PVA)
of low viscosity (28.4–4.8 cP) and observed the existence a certain
critical volume fraction (VC) for each solution, where the rotational
speed required to achieve uniform rimming flow takes a minimum
value. For V > VC the patterns are mainly the ‘‘shark-tooth’’ and tur-
bulent regimes, while for V < VC, ‘‘fingers’’ and ‘‘rings’’ are formed.
In addition, they found a critical rotational speed (Xc) for the annu-
lar flow to exist; for water this is �6 s�1 with a filling fraction �2%,
and for A < 0.5% the rotation speed for annular flow to exist is in-
versely proportional to the volume fraction.

Numerical and experimental work was realized by Evans [9] in
who presented three-dimensional numerical simulations for filling
fraction of �1.9% and silicone oil with l = 48 cP. The liquid motion
was described using a lubrication model and the results exhibit
similar fingering to that observed in laboratory experiments for
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Nomenclature

A filling fraction (%)
h coating thickness (m)
d embedding dimension (dimensionless)
D2 correlation dimension (dimensionless)
f frequency (Hz)
H Hurst t exponent (dimensionless)
L cylinder length (m)
R0 cylinder radius (m)

VC critical volume fraction (m3)
VL liquid volume (m3)
VT cylinder volume (m3)
l coating viscosity (cP)
r surface tension (Nm�1)
s time delay (dimensionless)
X cylinder rotation rate (s�1)
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rotation rate <2p s�1. Investigations for Newtonian and non-New-
tonian fluids were carried out by Johnson [10,11] beginning from
the lubrication approximations of the hydrodynamic equations,
and he was able to demonstrate the presence of a recirculating
zone and several possible flow configurations, but could not pro-
vide predictions for the transitions to these solutions. Meanwhile
Melo [12] investigated experimentally the applicability of the
lubrication approximation to the flow in the low fluid volume
limit.

When a wider variety of cases than the present low-volume
fraction regime are considered, there have been many studies in
the literature [13–15]. As noted below, they show the richness of
rimming flow with respect to rotation speed, various filling frac-
tions and fluid phase used.

The study of rimming flow began with the experimental work of
Balmer [16] who observed the presence of ‘‘hygrocysts’’ in the
internal walls of the tube. Later, other authors indicated the exis-
tence of large axial variations in coating ‘‘bands’’, finding that the
number of bands per unit cylinder length increased approximately
linearly with the cylinder rotation rate [17,18]. Chicharro [19]
developed a phase diagram in which the ‘‘basic’’ (stagnant) and
wavy flow patterns are indicated for low rotation rate using glyc-
erol as the fluid.

Thoroddsen and Mahadevan [20] observed the formation of
‘‘shark teeth’’ along the cylinder axis, in which the spacing between
the teeth depends on the rotation speed of the cylinder. Boote and
Thomas [21] added small granules (solid spherical glass beads) to
the liquid and they observed transitions between various types
of structures such as thicker bands (high particle loadings) sepa-
rated by thin almost-particle-free regions. The previous pattern is
very similar to the banding phenomena developing inside horizon-
tal, partially fluid-filled Taylor–Couette systems containing granu-
lar additives [22].

It is important to not only observe the rimming flow but to ob-
tain a characterization of the phenomena. In this sense, the first
theoretical flow-pattern characterization was obtained by Moffatt
[23] who derived an equation for predict the coating thickness
h = VL/2pR0L for rimming flow outside or inside a rotating horizon-
tal cylinder at low Reynolds numbers. He proposed a minimum
rotation speed (Xc) at which an annular flow pattern would be
reached; here the fluid and cylinder are rotating together as a solid
of revolution. In this case, Moffatt [23] established that the Stokes
number (St = qgh2/l Xc R0), in which q is the fluid density; the
Stokes number represents the ratio of gravitational to viscous
forces, and had a value of St � 3.14 when the annular pattern oc-
curs. This prediction was confirmed for a film-dragging experiment
by Melo [12].

Preziosi and Joseph [24] introduced a dimensionless number
J ¼ qw2

c ðR0 � hÞ3=r, indicating the ratio of fluid inertia to surface
tension. They found that the annular flow pattern could occur only
if J > 4. Fomin [25] found three regimes in the rimming flow of non-
Newtonian fluid using a scale analysis and non-dimensional
parameters. He identified the subcritical (fluid film thickness is a
continuous), critical (corner on the rising wall) and supercritical
(hydraulic jump) regimes, which depend on a critical mass flux
(qmax).

Rimming flow is analogous to many other physical phenomena
in which variations in a parameter control the regime selected. In
just one example, bubbling flows, the bubble generation rate (also
called the bubbling or sparging rate) determines the kind of flow
regime in the system [26]. To characterize such regimes several
techniques are used, such as the Fourier spectral (FS) and chaotic
time series analysis [27–30]. In the present paper, we apply the
above methodologies to rimming flow phenomena.

It is clear that the flow patterns in rimming flow are strongly
influenced by the liquid volume fraction, fluid surface tension, vis-
cosity and cylinder rotation rate, while, of course, maintaining the
same geometrical system parameters (R0, L). The aim of the present
study is the experimental determination of the pattern transitions
for a low filling fraction of 1.8%, using distilled water and with
cylinder rotation rate of 0.05–5.2 s�1, and their analysis by dynam-
ical-systems tools.
2. Experimental set-up

2.1. Pattern visualization

A sketch of the experimental system is shown in Fig. 1. The right-
circular Plexiglass cylinder has a radius and length of 4.7 cm and
67 cm respectively, and is held at both flat ends with two mobile
supports. The left mobile support is attached to a rigid arm while
the right is attached to a servo-motor mechanism. The servo-motor
(Reliance Electric Model E19–3, Reliance Motion Control Inc.,
Gallipolis OH, USA) is connected to a servo-motion programmable
controller card (Galil Motion Control Inc., Palo Alto CA, USA) which
is able to control rotation rates of 0.04–122 s�1. The rotation rate
was measured with a handheld digital laser tachometer (DT-
209X-S12, Nidec-Shimpo Corp., USA). Finally the interface card is
connected to a PC (Gateway Inc., Irvine CA, USA).

The filling fraction was 1.8% (70.7 ml, measured with a pycnom-
eter) and the liquid used was distilled water with l = 1 cP taken
from tables. For the visualization patterns a 300 W incandescent
light bulb (located at 80 cm distance from the cylinder) was utilized
in shadowgraph mode: the front side of the cylinder was illumi-
nated and the back-light was collected on a non-reflective white
screen, where the two-dimensional projection of the flow pattern
was observed. The patterns were recorded with a high speed color
camera Olympus i-SPEED (Olympus KeyMed, Ltd., United Kingdom)
at 500 frames for second with a resolution of 800 � 600 at 8 bit.
2.2. Pattern characterization

The appearance of patterns as a function of X are only qualita-
tive information. The patterns were generated at the cylinder rear-
face, where the liquid rose owing to the clockwise rotation of tube



Fig. 1. (A) General description of rotating-experimental set-up and (B) the light curve is the instantaneous free surface projection.
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and at the free surface of the liquid–air interphase, and are really
3D patterns. The figures III–V are the result of a 2D light-projection
(shadowgraph) while figures I, II, VI, VII are direct photographs of
the system and they indicate the flow of the free surface.

In order to obtain quantitative information with which to char-
acterize these patterns, a laser beam (Shanghai Dream Lasers Tech-
nology Co., Ltd, China) of 532 nm at 500 mW was directed via a
cylindrical lens to obtain a light sheet which was sent onto the long
horizontal cylinder (Fig 1B). The output of light sheet was collected
on a dark non-reflective screen yielding a 2D motion curve or time
series. This measurement could be described mathematically as a
reduction of the degrees of dimensionality of the system (a projec-
tion) and is utilized in mathematical applied sciences when the ori-
ginal phenomena are very complex [31,32], although in our case is
the first time that it is used for rimming flow phenomena. We be-
lieve that this is a first step to obtain quantitative data and subse-
Fig. 2. Patterns observed in the horizontal tube, (I) pool, (II) basic, (III) finge
quently to apply the Fourier spectral and chaotic methods for the
characterization of the patterns. The 2D motion curve was cap-
tured as a binary image then converted to data points using ImageJ
V-1.40f (Rasband, 1997–2008). The experimental data can then be
plotted with any usual graphing software.
3. Flow patterns and phase diagram

The rotation speed was varied in the 0–5.2 s�1 range in steps of
0.04 s�1. When X = 0 the fluid is stagnant at the bottom of the cyl-
inder and this is called the ‘‘pool’’ (Fig. 2I). When the speed is in-
creased to X < 0.08 s�1, the fluid continues to show a straight
contact line and is describes as a general circular flow (‘‘basic
flow’’), which has symmetry along the x-axis and continues to be
located at the bottom of cylinder (Fig. 2II). When X is between
rs, (IV) furrows, (V) waterfall, (VI) smooth tooth and (VII) annular flow.



Fig. 3. Phase diagram for the rimming flow with a filling fraction of 1.8%.
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0.08–0.16 s�1 the ‘‘fingers’’ pattern is observed (Fig. 2III); the
fingers are located on the wall on which the in the liquid is rising.
In this pattern, the fingers vary in size in the x-direction. When the
rotation speed is above X = 0.16 s�1 a ‘‘furrows’’ pattern is identi-
fied (Fig. 2IV) and persists in the 0.16–0.17 s�1 interval; in this re-
gime x-axis symmetry is again attained. A transient zone is reached
when X = 0.17 s�1 in which no pattern is observed. At X = 0.67 s�1

the ‘‘waterfall’’ pattern is observed (Fig. 2V), in which the axial
symmetry is absent and the pattern persists in the 0.67–1.5 s�1

range; at the end of this interval a new transient zone is identified
and again no pattern is observed. The ‘‘smooth tooth’’ pattern is
reached when X = 2.0 s�1 (Fig. 2VI). In this pattern, the axial sym-
metry is regained, with fluid located at the bottom of cylinder. Fi-
nally, the last pattern is identified when X = 5.2 s�1 (Fig. 2VII) in
which the fluid and cylinder are rotating together (as ‘‘a solid of
revolution’’ or ‘‘annular flow’’). Based on the observations above,
a phase diagram can be created, and is shown in Fig. 3.

4. Fourier spectral and dynamical-systems (chaotic) time series
analysis

4.1. Fourier spectral (FS)

A full description of the FS and other methods below was given
by Vazquez [33]. The FS method is frequently used to characterize
flow regimes in fluid dynamics. With this tool a preliminary iden-
tification of dynamic changes of the rimming flow regimes is pos-
sible, and perhaps other analysis tools are needed to further
identify and explain the complex behavior. In the case of rimming
flows, some researches have fully characterized transitions in the
evolution of a one-dimensional fluid front inside a horizontal rotat-
ing cylinder, using space–time spectral, correlation analysis, and
complex demodulation methods [32]. In the present work the FS
method is realized by the OriginPro v8.0724 package using a Welch
(Gaussian) window with a FFT size of 65536 points.

4.2. Hurst exponent (H)

Hurst analysis has been used to study hydrodynamics of three-
phase and two-phase fluidized beds [31], trickle beds [34], bubble
columns [35], flowing sand [36,37] and other natural phenomena
[38]. Brownian motions can be generated from a defined Hurst
exponent and the data sets are sometimes referred to as fractional
Brownian motion (abbreviated fBm). Fractional Brownian motion
can be generated by a variety of methods, including spectral syn-
thesis using either the Fourier transform or the wavelet transform.
Here the spectral density is proportional to

Spectral density a1=f b; ð1Þ

where b = 2H + 1 and f is the frequency.
The fractal method is usually employed to extract information

about stochastic behavior of time series. When the time series con-
tains both a rapidly and a slowly varying trend, Hurst exponent is
able to distinguish the following situations. For the long term
trend, H determines if the future of a time series trends is similar
to its past. In this case the system is called persistent or positively
correlated. For the short term memory, H determines if the future
of the time series tends to oppose its past. In this case, the system
is called anti-persistent or negatively correlated. According to
Darhos [34] H > 0.5 denotes a persistent process, i.e. the process
exhibits a significant trend. For H < 0.5, the process behavior is
anti-persistent, i.e. large positive values tend to be followed by
large negative values. For the singular case H = 0.5, the process cor-
responds to uncorrelated Gaussian white noise. Despite the effec-
tiveness of Hurst method in analyzing time series signals it
suffers from the drawback that it is sensitive to the probe type
and that calculations are highly time consuming [39].

4.3. Correlation dimension (D2)

The correlation dimension is one measure of the fractal dimen-
sion of a chaotic system and is one of the most important measure-
ments of chaotic behavior, because it quantifies the complexity of
the chaotic attractor as well as providing a link to self-similar prop-
erty of the fractal sets. Many authors [40–42] have utilized spatio-
temporal chaos for to the analysis of two-dimensional patterns. As
noted by Vazquez [33] and references therein, in extracting the
correlation dimension, the time delay (s) and the embedding
dimension (d) are very important parameters. If s and d are se-
lected appropriately, the chaotic attractor is revealed. Thus, choice
of the time delay is crucial at the very beginning of the reconstruc-
tion process. In a simple analogy, embedding a one-dimensional
object (a line) in a two-dimensional space (a plane) confirms that
it has a dimension of one, but embedding it in a three-dimensional
space (a volume) reveals nothing further. The Recurrence Plot is a
tool for determining s and d which will be outlined below. In the
present work the D2 calculation was realized by Visual Recurrence
Analysis (VRA) v.4.9 software.

4.4. Recurrence plot (RP)

The recurrence plot can help determine the correct choices for
both the embedding dimension and the embedding time delay
[43,44]. According to Atay and Altintas [45], the two-dimensional
RP can show intriguing patterns; however, they argue that many
of these are an artifact of the way the embedding is done. If the
embedding parameters are correctly chosen, only simple horizon-
tal segments should be visible, and if the reconstruction actually
represents the true dynamics, this can be directly observed in the
RP. Non-horizontal lines on a recurrence plot indicate phase space
vectors that are co-incidentally close but point in opposite direc-
tions, representing an incorrect choice of embedding dimension
or time delay [45]. Although Atay and Altintas [45] only consider
time series generated by smooth dynamical-systems, they assume
that the time interval between measurements is sufficiently small
to capture the smoothness of the trajectories. Hence, establishing a
recurrence plot without non-horizontal patterns is the first step in
the determination of the correct embedding parameters. However,
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Kung-Sik and Howell [46] show recurrence plots for discrete time
data in which diagonal lines are observed, and if these lines do not
include isolated points, they state that the embedding dimension is
determined correctly.

Thus, for the present rimming-flow analysis, a wide range of s
values were examined for each case, including but not limited to
those suggested by RP; a similar approach was used by Vazquez
[33] for bubbly flows. The ones presented below gave the most rea-
sonable results, as determined by criteria such as the saturation of
the correlation dimension.

5. Results and discussion

5.1. Results

The laser-signals and data points for each pattern are shown in
Fig. 4; each time series is composed of P30,000 data points.

The Fourier spectral graphs are shown in Fig. 5. For the pool pat-
tern (Fig. 4A) the characteristic frequency is zero and it is to pre-
sents secondary harmonics equally spaced at 0.2 and 0.4 Hz
(Fig. 5A). The FS for the fingers pattern (Fig. 5B) shows significantly
more noise than the FS for the other patterns (Fig. 5C–E) but the
spectral trend is similar.

In order of obtain a pattern characterization, the correlation-
dimension technique was applied (Fig. 6), in which the delay time
was the s value obtained when D2 saturation is reached.

The recurrence maps (Fig. 7) show that in the pool pattern all
points fall on the diagonal indicating that the pattern is very stable.
Of course, this is because in this case the cylinder is stationary and
no laser light dispersion is observed. The fingers and furrows are
patterns with a similar behavior or structure, because many points
occur on the diagonal. For the waterfall pattern, a different recur-
rence structure occurs, with a more random behavior, since more
points occur away from the diagonal. A totally chaotic behavior
is observed in the recurrence map for the smooth tooth pattern.
This is clear because all points are dispersed and it is not possible
to see any structure.

In order to better understand what happened when the patterns
change, the Hurst exponent is calculated using the FS analysis and
Fig. 4. Experimental binary-laser signals and time series for pool (A), fin
the results are plotted jointly with the D2 values for each pattern
(Fig. 8). It is interesting observe that while the D2 have a zig-zag ten-
dency, the H values are always decreasing. The literature mention
that the H exponent indicates the time series behavior, which in this
study represents the type or manner of the fluid motion. Strictly
according to the definition (Section 4), the fingers pattern (H >
0.5) has ‘long term memory’ because the future of the time series
trend is similar to its past. In contrast, the other patterns (furrows,
waterfall and smooth tooth) have H < 0.5; the patterns are anti-
persistent with large positive values followed by large negative val-
ues; from a geometric perspective, the anti-persistent series are
more jagged than the H > 0.5 case, in which the series are smoother.

For the correlation dimension it is clear that in the pool pattern
the series time is a horizontal line (Fig. 4A) and that one dimension
is sufficient for cover or embed the pattern. When the correlation
dimension increases from 1.08 to 2.26 it indicates that the fingers
pattern is unstable with respect to pool pattern, and it is observed
that points move away from the diagonal in the recurrence map
(Fig. 7). Next, D2 changes from 2.26 to 2.42; this rise in the D2 value
indicates that the furrows pattern is little more complex or random
than the fingers pattern; this is corroborated by the recurrence
maps (Fig. 7), in which is possible to see that in the furrows pat-
tern, the liquid coating passes from stable to unstable states.

To seek an explanation of the previous pattern changes, con-
sider the experimental forces in the thin liquid layer. At low speed
rotation an internal liquid layer is added to cylinder (owing to the
no slip condition) and the subsequent layers are pulled up. When
the finger pattern is reached, liquid fingers are observed in the
external liquid layer (the free surface) and they maintain a tempo-
rally stable shape, indicating that drag and surface tension forces
have contributed to establish an equilibrium with the gravity force
(see force diagram, Fig. 8). For this case the rotational effect is neg-
ligible. In the furrows pattern, the rotational velocity is greater
than in the fingers case, and more liquid layers are pulled up the
cylinder wall, but at the same time a greater mass of fluid is col-
lected, and thus falls in the bottom of the cylinder. In this regime,
the surface tension force not can maintain the fingers shape and
the drag and gravity forces dominate the pattern; and again the
rotational force is negligible.
gers (B), furrows (C), waterfall (D), smooth tooth and (E) patterns.



Fig. 5. Power spectrum for each pattern indicated in the (A–E).
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As the rotation rate is further increased, D2 falls from 2.42 to
2.15, which suggests that the waterfall pattern is more stable than
the furrows pattern. This situation is not confirmed for the recur-
rence map (Fig. 7), because the waterfall recurrence map shows a
more dispersed distribution, even though it is possible to observe
a structure. In this respect, and considering the force diagram,
more fluid is lifted up to the ascending wall of the cylinder, and
consequently, the total gravitational force is increased and domi-
nates the pattern. Therefore the surface tension force not is able
to maintain the shape of the air–liquid free surface. This is



Fig. 6. Times delay and correlation dimension for pool (X = 0), fingers, furrows, waterfall and smooth tooth patterns.

Fig. 7. Recurrence maps for the flow patterns.
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observed when external liquid layers (near the free surface) slip
over internal layers, generating the ‘‘waterfall’’ effect. The forego-
ing forces competition may be understand by dynamical-systems
theory as if the liquid coat undergoes a self-organization.

Finally, the correlation dimension reaches a maximum value
and in this sense the smooth tooth pattern is the most unstable
or chaotic. This behavior is corroborated by the recurrence map
(Fig. 7) in which many dispersed points break up the phase-space
structure. In this regime, the rotational velocity is strong and car-
ries away a great amount of liquid up the ascending wall. The drag
and surface tension forces are unable to support the liquid in the
wall, causing the liquid to fall to cylinder bottom, where the
smooth tooth pattern is observed.

A summary of the dynamical-systems variables obtained in the
study are shown in Table 1 (with the R-squared coefficient for the
Hurst exponent added).
5.2. Discussion

5.2.1. Flow patterns
The experimental work of Vallette et al. [7] corroborates the

present the pattern-appearance order for low volume liquid frac-
tions, but they do not mentioned the furrows pattern or the tran-
sient zones. This is justified because they were more focused on
high Reynolds numbers, whereas for the present study the
Reynolds range is low.

As noted in the Introduction, a minimum rotation speed has
been proposed as a first parameter for flow-pattern characteriza-
tion by Moffatt [23]; using this criterion, annular flow is reached
at St = 3.14. In the present case, the Stokes number for annular flow
is 5.77 at X = 5.2 s�1; this is greater than that found by Moffatt
[22]. It is possible that gravitational and viscous forces are not suf-
ficient to select the patterns. The Reynolds number takes a higher



Fig. 8. Correlation dimension (circles) and Hurst exponent (asterisk) values for each flow pattern and forces diagram acting in rimming flow.

Table 1
Dynamical-systems (chaotic) parameters.

Patterns s D2 H

Pool 1 1.08 Disable
Fingers 18 2.26 0.51 (R2 = 0.59)
Furrows 14 2.42 0.49 (R2 = 0.96)
Waterfall 22 2.15 0.44 (R2 = 0.88)
Smooth tooth 6 2.59 0.34 (R2 = 0.98)
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value (10.34) in the present study when annular flow is reached. In
another attempt at characterize rimming flow patterns, a dimen-
sionless number (J) was introduced by Preziosi and Joseph [24].
They indicate that if J > 4 the annular pattern could occur. In the
present case J = 39 (for X = 5.2 s�1) which is at least consistent
with Preziosi and Joshep’s criterion because an annular flow was
observed in the present experiment. The large disparity in values
of J for annular flow between Preziosi and Joseph [24] and our-
selves suggests that inertia and surface tension alone are not the
sole pattern-selection forces. Many factors including rotational
inertia, surface, tension, gravitational and viscous forces may be
relevant as well as geometric parameters such as the coating thick-
ness (filling fraction), and cylinder radius.
5.2.2. The spectral and chaotic analysis
After the above time series data analysis, we believe that the FS

technique not is a good tool to indicate the pattern transitions. This
is because the spectral trend for fingers, furrows, waterfall and
smooth tooth patterns is very similar and not is possible distin-
guish any change in the frequency; however this trend resembles
fractal behavior, so that the FS can suggests an self-similarity
tendency.

The flow transitions are better represented by the recurrence
maps. These maps can reveal the new liquid structures even if the
rotating velocity changes are minor. There is an interesting contrast
with the Hurst exponent. As detailed above, the Hurst parameter
established two different phenomena for the fingers and furrows
patterns, but the recurrence maps suggested that these patterns
are correlated. We believe that in this sense the Hurst classification
is confusing for values in the neighborhood of 0.5. The literature
indicate that values H � 0.5 white noise behavior is observed [35],
or possibly that if the series time are very short (<3000 points),
the Hurst accuracy not is reliable. However, in the present work,
the time series has approximately 30,000 data points.

With respect to the Hurst exponent trend, the negative slope
observed may be valid if we only consider flow patterns greater
than 0.5 such as the waterfall and smooth tooth.
Comparing the D2 results in Fig. 8 with the phase diagram for
the rimming flow (Fig. 3) it is possible see that when the fluid pat-
terns (fingers and waterfall) are localized on the rotating ascending
wall, the correlation dimension values show more stable regimes
whereas for the regimes with greater random fluctuations (the fur-
rows and smooth tooth patterns) are located on the cylinder bot-
tom. It is true that the time series for the furrows and smooth
tooth patterns have irregular or higher amplitude saw shapes,
which have an important influence on the D2 calculation. This cal-
culation reports that these patterns show characteristics of meta-
stable systems. On the contrary, the smoothness of the fingers
and waterfall time series indicate that the free-surface evolution
is not affected by small changes in the rotational velocity, and
therefore shows characteristics of stable systems.

Summarizing the discussion above and taking account our
experimental observations, we suggest that in the stable systems,
small changes in X do not significantly modify the force competi-
tion in the free surface, while for meta-stable systems, small
changes in the rotational speed have an important influence on
the force competition.
6. Conclusions

Rimming flow has been observed at very low volume fractions,
quantitative data obtained by a novel technique, and an assess-
ment has been made of the efficacy of various dynamical-systems
analysis for the characterization of the patterns.

The fluid patterns we report are in agreement with those of pre-
vious authors, although the fingers and furrows patterns not are
generally reported.

The results indicate that the laser-light technique is able to ob-
tain time series data from each pattern. The analysis for these time
series show that the FS method not can characterize the patterns
but can indicate the noise level in the signals and a fractal trend
in the time series.

With respect to dynamical-systems (chaotic) analyzes, the
Hurst exponent is a good tool for determining when a new pattern
appears, but not can detect clearly if this pattern is more chaotic or
stable that the previous pattern.

The recurrence plots can be a reliable option for demonstrating
the flow transitions and the system stability (qualitatively), and are
a good complement to the correlation dimension.

Finally we conclude that the correlation dimension is an ade-
quate tool for characterizing rimming-flow fluid patterns. Using
the correlation dimension, it is possible to observe pattern transi-
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tions, to determine if the pattern is stable or chaotic, and to under-
stand the force competition in the free surface.
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