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Experiments were performed on both the acoustic and pressure signals produced by bubbles formed
from an underwater nozzle. The data were analyzed by a comprehensive set of spectral and nonlinear-
dynamical techniques. As air flow rates increase, it is well known that such flows became chaotic.
However, the present study of both acoustic and pressure signals showed that chaos could appear in
different regimes and was manifested in different ways in the acoustic and pressure signals. The use of
different time delays for the chaotic analysis of acoustic and pressure signals were found necessary. The
acoustic signals offer data primarily on the bubble size while the pressure signals offer data primarily
on the bubble production rate. The present results suggest that chaos can appear in the bubble size and
bubble production rate independently.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Bubbling flows have great importance in many industrial pro-
cesses (Shah and Deckwer, 1985; Krishna et al., 1997; Koynov and
Khinast, 2004; Raffensberger et al., 2005), in biological applica-
tions (Walter and Blanch, 1986; Prakash et al., 2001; Klein et al.,
2002), and also in geophysical behavior (Johnson 1986; Loewen and
Melville, 1991; Vergniolle and Brandeis 1996; Leifer and Patro, 2002;
Graham et al., 2004). In bubbling flows, the bubble production rate
(also called the bubbling or sparging rate) determines the kind of
flow regime in the system (Clift et al., 1978). Gas bubbles (in a given
ambient liquid) are typically generated by porous ceramic stones,
sieve plates, capillary tubes, electrical fields, or flexible orifices, etc.
In many experimental studies the flow regimes are classified with
respect to bubble production frequency or air flow rate (Q). Sato
et al. (1979) described three regimes of bubbling: periodic bubbling,
dispersed bubble production, and sparking-larger bubble production
for those bubbles generated with an electrical field. Similarly, Shin
et al. (1997) outlined three bubbling modes—dripping, an erratic
mixed mode, and a spray mode.

To characterize these bubbling regimes several techniques are
used, such as high speed video (Teresaka et al., 2000; Lee et al., 2003;
Oliveira and Ni, 2004), impedance tomography (George et al., 2000;
Wang et al., 2002; Zenit et al., 2003), pressure transducers (Johnsson
et al., 2000; Ruzicka et al., 2000; Barghi et al., 2004; Chilekar et al.,
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2005), acoustic hydrophone probes (Zukowski 2001; Manasseh et al.,
2001, 2004; Vazquez et al., 2005; Al-Masry et al., 2005, 2007), and
X-ray emissions (Xie and Tan, 2003; Hulmea and Kantzasa, 2004;
Hubersa et al., 2005). However, pressure and acoustic transducers
are widely used because of their low price, high resistance to corro-
sive liquids and their ability to operate at elevated operational tem-
peratures and pressures.

Of course, both `pressure' and `acoustic' transducers measure
pressure, but over very different frequency bands. Pressure transduc-
ers are designed to measure static pressure although they can also
respond to fluctuations in pressure up to a few hundred Hz. Acoustic
transducers are designed to measure only fluctuations in pressure,
and are typically used for frequencies above a few hundred Hz.

It is important to note that two very different natural timescales
of pressure fluctuations will occur in bubbling flows. As each bubble
is pinched off and rises, the flow created in the liquid generates
a pressure fluctuation in the liquid. Signals obtained by pressure
transducers are dominated by this bubbling-rate signal, which is in
the order of 10Hz (e.g., Clift et al., 1978; Manasseh et al., 2001).
However, the bubble formation also causes the gas trapped in the
bubble to oscillate volumetrically, due to the compressibility of the
gas. This is a much higher frequency process, given by the Minnaert
frequency

f0 = 1
2�

√
3�P∞

�
· 1
R0

, (1)

where (Minnaert 1933), f0 is the frequency in Hz, P∞ is the abso-
lute liquid pressure, � is the ratio of specific heats for the gas, � is
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the liquid density, and R0 is the equivalent bubble radius (the ra-
dius assuming the bubble is a spherical volume). Thus, the acoustic
transducer signals are dominated by the Minnaert frequency which
is in the order of 1000Hz. Thus, it might be expected that analyses of
simultaneous measurements of acoustic and pressure signals would
reveal different phenomena. Owing to this difference in timescales,
cross-correlation of the two signals would not bemeaningful; indeed,
the `acoustic' signals would be correlated with the `pressure' signals
at frequencies of the order of 10Hz, in which band both transducers
are measuring exactly the same quantity: low-frequency pressure
fluctuations due to the rate of bubble detachment.

The pressure fluctuations (time series) are generally analyzed by
power spectral density (PSD) and Fourier spectral (FS) methods and
are applied in orifice or nozzle systems or fluidized beds (Fan et al.,
1981; Satija and Fan, 1985; Sun et al., 1994; Johnsson et al., 2000;
van der Schaaf et al., 2002). However, in the majority of cases, these
methodologies are qualitative. In recent years, nonlinear dynamical
systems (or `chaotic') analysis has been introduced for bubbling-flow
regime characterization, because this methodology can extract much
information hidden in apparently random signals. Some researches
have used auto-regressive moving average (ARMA) models for lin-
ear dynamics analysis in time series data of physical events (such
as sunspots, environmental data, etc.) but these models have been
unable to explain the events in a satisfactory manner (Fan and Yao,
2005).

Ruzicka et al. (2000) introduced nonlinear dynamical systems
analysis to orifice bubbling signals. Mosdorf and Shoji (2003) applied
nonlinear analysis (the Lyapunov exponent) in order to explain the
changes in bubbling flow, and they indicate that the largest Lyapunov
exponent is increased when the air volumetric flow rate changes
from 500 to 1500mlmin−1. Other authors (Nguyen et al., 1996;
Tufaile et al., 1999; Tufaile and Sartorelli, 2000) use bifurcation plots
to illustrate that the complex dynamics in the bubbling flow result
from the variation in some process input variable, such as the flow
rate.

Liu (2003) employed nitrogen and distilled water as the gas and
liquid phase respectively, in an acrylic column with an inner diam-
eter of 0.07m and a height of 1.0m. Liu observed that when the
correlation dimension (D2) for Q = 73mlmin−1 is about 2.5 (for in-
termediate values of the hyper-sphere radius r to be decribed in

Fig. 1. Experimental set-up in which both acoustic (wireless hydrophone) and pressure signals (differential sensor) channels are sampled simultaneously over 60 s giving
2.6×106 data points per channel.

Section 3.2 below), the process can be identified as periodic bub-
bling; when Q is in the range of 168–250mlmin−1, the D2 values
first increase, indicating the onset of chaotic bubbling, but later de-
crease, which may result from a self organization of the bubbling
system due to bubble–bubble interactions. When Q increases further
(357–998mlmin−1) an abrupt increase in D2 is observed, indicating
that the bubbling process begins to undergo another re-organization.
The increase and drop in D2 shows that the bubble hydrodynamics
changes from a primary chaos to a high degree of chaos, and in this
range of Q, break-up and coalescence of the bubbles dominate the
bubbling process.

Zhang and Shoji (2001) observed four regimes for an air volume
flow rate range of 100–2000mlmin−1, in which regimes of single
bubbling, pairing, double, and triple coalescence are found. For Zhang
and Shoji (2001), the pairing-bubble regimewas themost interesting
from the point of investigation from chaos theory, and therefore,
their nonlinear analysis was done for a range of 435–1500mlmin−1.

Cieslinski and Mosdorf (2005) used a hydrophone to measure
acoustic signals of air bubbling from a submerged 0.9mm glass noz-
zle. Based on data from a laser interrupted by the bubble formation
as well as hydrophone data, they obtained the maps of chaotic at-
tractors for several volume flow rates (42, 125, and 233mlmin−1).
All attractors displayed a chaotic character. They did not measure
pressure signals as well.

Although the previousmethodologies (PSD, FS, chaotic) have been
applied to pressure signals, apart from Cieslinski and Mosdorf (2005)
the literature lacks nonlinear dynamical systems (chaotic) studies
on acoustic signals in bubbly flow. The present work applies chaotic
analyses to acoustic as well as pressure signals measured simulta-
neously in the same system.

In the present work, we obtained the time series data of the
multi-spectral pressure and acoustic signals for air bubbles gener-
ated in distilled water, for Q in the range of 70–305mlmin−1. The
correlation dimension D2 is calculated for these pressure–acoustic
fluctuations and three bubbling flow regimes are observed.

2. Experimental set-up

The experimental sketch is shown in Fig. 1. The air is provided
by a compressor (Cole-Parmer, Quiet Vacuum, USA) at a pressure
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of 34.5 kPa. Air is pumped into a pre-saturation column which pre-
vents rapid changes in bubble volume after its pinch-off, owing to
inflow to the bubble of water vapor (Manley, 1960), and is con-
trolled by a coarse valve. The air then passes through a cylindrical
supply chamber (3.7×10−3 m3) which maintains a constant pressure
that could be varied between 0 and 4.4 kPa. Subsequently, the air
flow is controlled and measured by a fine valve and a flow meter
(NO.11/1–350mlmin−1, and Gilmont Inc., St. Louis MO. USA), re-
spectively. The air bubbles are generated using a glass capillary tube
(Drummond Scientific, Broomall PA, USA), with an inner diameter of
990 ± 10�m inserted in an acrylic base centered in the glass tank
of 0.2×0.2×0.5m. The tank dimensions ensured wall effects during
bubble formation, pinch-off, and acceleration within the tank were
negligible (Filderis and Whitmore, 1961). The tank was filled to a
height of 0.4m with distilled water (Thermal-Line, USA) and main-
tained at 22 ± 0.5 ◦C. The vertically oriented capillary tip was at a
depth of 0.09m.

The air-pressure fluctuations are measured with a differential
pressure device (Motorola MPXV5004G series, Denver, Colorado,
USA) installed in the capillary base, and the passive acoustic signals
are obtained by a piezoelectric wireless hydrophone built in the
laboratory (Vazquez et al., 2005) and located an optimal 5 cm away
from the bubble generator in order to minimize any perturbation
to the bubble dynamics and to maximize the quality of the acoustic
signal as much as possible (Manasseh et al., 2001). The tank was
designed to be large enough to neglect reverberation (Kinsler and
Frey 1962; Nikolovska, 2005; Manasseh et al., 2008). Both pressure
and acoustic time series are recorded simultaneously with an audio
card (Sound Blaster 64 PCI) at 44.1 kHz/16 bit using the external
and microphone inputs for the pressure and acoustic perturbations,
respectively. The data acquisition time was 60 s giving a total of 2.6
million data points recorded for each Q value. The bubbling flow
regimes are captured by a high speed camera (MotionScope 8000S,
Lake Image Systems, NY, USA) at a frame rate of 1000 frames s−1

and a resolution of 160×140 pixels on an 8-bit gray scale; the im-
ages are stored in the PC. Illumination is provided by 500W halogen
lamp shining on the back wall of the tank and a diffusion screen
decreases small-scale inhomogeneity in the illumination.

3. FS and chaotic time series analysis

3.1. Fourier spectral (FS)

The FS method is frequently used to characterize flow regimes
and for verification of the relationships for scale-up, simulations and
physical phenomena in fluidized beds (Van der Schaaf et al., 1999,
2002; Chilekar et al., 2005). The previous studies concentrated on the
dominant frequency as the main characteristic of the flow. In addi-
tion, with this tool a preliminary identification of dynamic changes
of the bubbling flow regimes is possible, and perhaps, other analysis
tools are needed to further identify and explain the complex behav-
ior.

In this work the FS was realized by Adobe Audition v1.0 package
using a Welch (Gaussian) window with an FFT size of 65536 points.

3.2. Correlation dimension (D2)

The correlation dimension is one measure of the fractal dimen-
sion of a chaotic system; others are the box-counting, similarity or
Lyapunov dimension of a chaotic system. The correlation dimension
is one of the most important measurements of the chaotic behavior,
because it quantifies the complexity of the chaotic attractor as well
as providing a link to self-similar property of the fractal sets. The
correlation dimension is related to the number of ordinary differ-
ential equations required to describe the system. Previous authors

(Johnsson et al., 2000; Lin et al., 2001; Liu, 2003; Mosdorf and Shoji,
2003) have utilized D2 for bubbling regime characterization in bub-
ble columns, and fluidized beds. In our case, D2 is given by

C(r) ≈ rD2 , (2)

where

C(r) = 1
N

N∑
k=1

1
N

N∑
n=1

�(r − |�y(n) − �y(k)|), (3)

with � being the Heaviside step function and r the radius of a di-
mensional ball (a hyper-sphere), (Lin et al., 2001). From Eq. (2), D2
is the slope of ln C(r) vs. ln r. In Eq. (3), �y is a vector of dimension d,
computed from the original time series data.

In this type of analysis the time delay (�) and the embedding
dimension (d) are very important parameters for extraction of the
correlation dimension. With proper selection of the time delay and
the embedding dimension, the chaotic attractor is revealed. For this
reason, choice of the time delay is crucial at the very beginning
of the reconstruction process. The time delay cannot be too small
(or the axes of the d dimensions would be too closely related) and
cannot be too large (or information would be lost between axes).
Similarly, if dwere selected too small, the delayed phase space cannot
completely unfold the attractor and false nearest neighbors would
occur. As d is increased above the correct (or saturation) value of
the correlation dimension, D2 will cease to increase, since adding
more embedding dimensions will not reveal more dimensions of
the attractor. In a simple analogy, embedding a one-dimensional
object (a line) in a two-dimensional space (a plane) confirms that
it has a dimension of one, but embedding it in a three-dimensional
space (a volume) does not reveal anything further. As noted above,
in the present work, the acoustic and pressure signals have inherent
timescales that are very different. Hence, the use of different � is
likely to be necessary for the acoustic and pressure signals. In the
present work the D2 calculation was realized by visual recurrence
analysis (VRA) v.4.9 software and general indications of the delay
times are calculated using the average mutual information algorithm
(AMI). Abarbanel (1996) states that the AMI is a kind of nonlinear
autocorrelation function that can be used to determine when two
measurements of the data, s(n) and s(n+�), are independent enough
of each other to be useful as co-ordinates in a time delay vector,
but not so independent as to have no connection with each other
at all. The actual prescription suggested is to take the � where the
first minimum of the AMI occurs as the value to use in time delay
reconstruction of phase space. Abarbanel (1996) notes that the choice
of the first minimum of the AMI is reminiscent of the choice of the
first zero of the linear autocorrelation function and that this choice is
the optimum linear choice from the point of view of predictability, in
a least squares sense, of s(n+�) from knowledge of s(n). However, for
some phenomena Abarbanel (1996) cannot recommend this choice
at all, noting that such a linear choice has no clear relation to the
nonlinear process relating s(n) and s(n+�).

Thus, for the results of the present paper, a wide range of � values
were examined for each case, including but not limited to those
suggested by AMI, and the ones presented below gave the most
reasonable results, as determined by criteria such as saturation of
the correlation dimension.

3.3. Recurrence plot (RP)

The RP can thus help determine the correct choices for both the
embedding dimension and the embedding delay (Eckmann et al.,
1987; Mindlin et al., 1991). Atay and Altintas (1999) indicate that the
two-dimensional graph can contain intriguing patterns; however,
they argue that many of these patterns are artifacts of the way the
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embedding is done, and if the embedding parameters are correctly
chosen, all one should see are simple horizontal segments, and if
the reconstruction actually represents the true dynamics, this can be
directly observed in the RP.

The RP is a device displaying how the reconstructed trajectory
comes close to it self (Atay and Altintas 1999). The plot is constructed
following the definition of Atay and Altintas (1999). Let � be a fixed
positive number, and define the array

aij =
{
1 if ‖vi − vi+j‖ <�
0 otherwise

, i, j = 1, 2, . . . , (4)

where the vk are the vectors obtained by

vk = (xk, xk−�, . . . , xk−(d−1)�), (5)

and ‖ · · · ‖ denotes the usual Euclidean norm. The quantity � is a
measure of closeness and is usually expressed as a percentage of
the diameter of the attractor or the standard deviation of the time
series data. The RP is obtained by plotting a point on the i−j plane
whenever aij = 1.

Nonhorizontal lines on a RP indicate phase space vectors that are
co-incidentally close but point in opposite directions, representing
an incorrect choice of embedding dimension or time delay (Atay and
Altintas, 1999). Hence, establishing an RPwithout nonhorizontal pat-
terns is the first step in the determination of the correct embedding
parameters. Although in this case Atay and Altintas only consider
time series generated by smooth dynamical systems, they assume
that the time interval between measurements is sufficiently small
to capture the smoothness of the trajectories.

Kung-Sik and Howell (2001) show RPs for discrete time data in
which diagonal lines are observed, and if these lines do not include
isolated points, they state that the embedding dimension is deter-
mined correctly.

Fig. 2. Pressure and acoustic time series fluctuations for 70, 240, and 305mlmin−1 air flow rate.

4. Results and discussion

The pressure–acoustic time series are shown in Fig. 2. For
Q = 70mlmin−1, the pressure and acoustic signals show a frequency
of ≈ 25 bubbles s−1 (each maximum peak corresponding to a bub-
ble departure) and the production of solitary bubbles are clearly
observable (Fig. 3). For Q = 240mlmin−1, the pressure fluctuations
indicate a frequency of ≈ 35 bubbles s−1, while in the acoustic
case, it is no longer possible to identify bubble detachment, and co-
alescence at the tip of the capillary tube is observed (Fig. 3). When
Q = 305mlmin−1, the pressure signal indicates a frequency of ≈ 45
bubbles s−1, the acoustic signals are completely superimposed and
an air jet is observed at the capillary tip (Fig. 3).

Applying simple FS to the time series data we obtain Fig. 4. In
the pressure case the continuous thick, continuous thin and dashed
lines represent low (70mlmin−1), moderate (240mlmin−1) and
high (305mlmin−1) air flow rates, respectively. When the air flow
is increased, the bubbling-rate frequency peak is moved to the right
side in the figure; this displacement is a typical observation in any
sparging system (Clift et al., 1978); it was, for example, observed by
Fan et al. (1986) for glass particles in a fluidized bed and Liu (2003)
in a gas–liquid column. In the acoustic case, the frequency peak is

Fig. 3. Bubble generation photographs.
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Fig. 4. Fourier spectra for pressure and acoustic data in which the amplitude is normalized, for three different flow rates, Q = 70, 240, and 350mlmin−1; legend is on plot.

moved to the left side of the figure. This indicates that the bubble
size changes from 1500 to 2285�m and finally to 2285–4975�m for
the low to high Q values, using Minnaert's relation (Eq. (1), Minnaert,
1933) to calculate the bubble sizes.

With the FS method three bubbling regimes for each air flow rate
can be distinguished, called disperse, chaotic-disperse transition and
random-chaotic. But generally the FS methodology does not give
clear results for most bubbly flow regimes (Briens and Ellis, 2005).

In Fig. 5 the correlation dimension plots for the pressure and
acoustic signals are shown. The graphs were generated using a time
delay ranging from 1 to 10. The embedding dimension (d) reaches
saturation values of 6 and 16 for pressure and acoustic cases, respec-
tively, when the air flow rate is low, while for moderate air flow rate
the saturation value is reached only for the pressure case and this
not is observed in the acoustic case. This implies that the time de-
lays chosen fail to reveal the attractor for moderate flow rates only.
For the high air flow rate the saturation value is 10 and 14 for the
pressure and the acoustic signals, respectively.

The present saturation D2 values ranging from approximately 5
to 20 are consistent with those reported by Lin et al. (2001) and
Liu (2003). However, an interesting subtlety is revealed on exami-
nation of Fig. 5. In all cases, the embedding dimension (d) value at
which D2 saturates is significantly greater than the corresponding
D2 value. For example, in Fig. 5A, an embedding dimension d of 6 is
required to reveal that the pressure signal has a saturation D2 value
of about 2. In principle, as noted in Section 3.2, d needs to be greater
than the correct value of D2 in order to reveal the correct D2, but
once d is larger than the correct D2, no further details of the attrac-
tor should be revealed. In theory, d > = D2 is sufficient (Ding et al.,
1993; Nerenberg and Essex, 1990); however in the presence of noise,
it may be necessary to have d > = D2+1 (Takens, 1981). Checks with
the software on artificial sine-wave signals confirmed this princi-
ple is obeyed by the software, and thus the results of Fig. 5 need a
physical explanation. One possible reason is that both pressure and
acoustical signals contain low levels of noise that makes their true
fractal dimension difficult to determine, forcing the software algo-
rithm to increase d to try to reveal further dimensions that are not
present.

Although the AMI function was used to give general guidance, it
must be noted that sometimes, depending on the data, the usage of
another method of defining � gives better results; examples are the
degree of separation function, or Lyapunov exponents. In practice,
irrespective of the method used to define �, in the present work the
analysis was repeated several times with different � values empiri-

cally chosen around those suggested by the AMI function. The delay
times used in Fig. 5 are those delay times, �, for which it was possi-
ble to observe some saturation values for D2. The � values obtained
using the AMI function were 4, 6, and 4, respectively, for the low,
moderate, and high air flow rates of the pressure case, and 9, 10, 15,
respectively, for acoustical case. With these actual values, no satu-
ration of the correlation dimension saturation was reached. In this
sense the AMI function was a tool for the estimation of approximate
values for �; however is it clear that the actual values were inappro-
priate. At least for the results of the present paper, this may be an
inherent feature of the presence of noise in the data and possibly to
the complication introduced by the two timescales.

Now, using the method of delays (MOD), the phase space is re-
constructed for the three air flow rates cited above, and are shown
in Fig. 6. The time delays were � = 10, 1, 9, respectively, for the three
flow rates of the acoustic case and � = 1, 4, 1 for the pressure case.
The acoustic case (Fig. 6A, B, C) will be discussed first. It is interesting
to observe that for the acoustic case the points are close, forming a
circular shape for the low flow rate (Fig. 6A), indicating that a good
reconstruction has been performed in this case. Meanwhile when
the air flow is increased the points are close to diagonal implying
that the delay time is too small for an appropriate reconstruction
(Fig. 6B). This is consistent with the result of Fig. 5B, which also sug-
gested that the delay time used (� = 1) was inappropriate for this
intermediate air flow case. Indeed, a time delay of 1 is unlikely to
have any physical significance at all, representing essentially, elec-
tronic noise. When delay times in the range suggested by AMI were
used (� = 9, 14, 15 for Fig. 6A, B, and C, respectively), only Fig. 6B
changed significantly, becoming more like Fig. 6A. Finally when the
air flow is high, the points are dispersed all over the phase space plot
(Fig. 6C). This indicates two aspects: the delay time may be too large,
or the system is in a very chaotic regime. From Fig. 5C we observed
that the delay time was appropriate, and therefore, the second in-
ference that the regime is very chaotic is more believable.

For the pressure time series, the points are close to diagonal for
the three air flow rates, though for the moderate air flow two diag-
onals are observed (Fig. 6E). From Fig. 5B the delay time is appro-
priate, and therefore, the phase space indicates that the system is in
a transitional regime. Some points are dispersed away from the di-
agonal for the high flow rate, and as in the equivalent acoustic case
this is probably because that the system is in a very chaotic regime
(Fig. 6F). When delay times in the range suggested by AMI was used
(� = 4, 6, 4 for Fig. 6D, E, and F, respectively), these Figs. 6D, E, and
F did not change significantly.
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Fig. 5. Correlation dimension (D2) plots for low (A), moderate (B), and high (C) flow rates for pressure (square) and acoustic (circles) signals.

In order to confirm the regimes identified above, the RPs were
computed and are shown in Fig. 7 for the pressure case (� = 1 for each
flow rate) and Fig. 8 for the acoustic case (� = 10, 4, 9, respectively).

In the pressure case, the structure of the RP for the low air flow
rate is formed from slightly deformed diagonal lines (Fig. 7A), while
for themoderate flow rate the diagonals exhibit dispersed points. For
the high flow rate the dispersed points disappear, but the diagonals
now are broken. The foregoing indicates that when the air flow rate
is increased, the system changes from a stable to a chaotic state
(Fig. 7). However, in the acoustic case, even for the low air flow rate
(Fig. 8A) the RP does not shown any clear structure and when the air
flow is high (Fig. 8C) the recurrence map exhibits many dispersed
points indicating that the system is very chaotic.

The correlation fractal dimension D2 for both signals as a function
of air flow rate Q is shown in Fig. 9.

At first as Q increases, D2 decreases from 5.5 to 4.3 for the acoustic
case, while for the pressure case D2 rises slightly to 2.2 and falls

to 1.9. This delineates Region I. As Q increases further, the D2 rise
slightly and then fall, from 3.8 to 3.4 for the acoustic case, and from
2.5 to 1.8 for the pressure case. This delineates Region II. Finally, in
Region III, the D2 values change from 3.6 to 3.65 (acoustic) and from
2.2 to 1.6 (pressure).

Similar D2 behavior for the pressure signals was observed in the
experimental work of Liu (2003) for a gas–liquid bubble column.
In Liu (2003), when the gas flow rate was increased, a sequence of
periodic bubbling, primary-advanced chaotic bubbling, and jetting
or random bubbling was successively observed. In our study, these
flow regimes correspond to Regions I, II, and III.

In Region I, individual bubbles are generated, the pressure–
acoustical signals are easily identified and the biphase system is sta-
ble. Region II is characterized by changes in the bubbling dynamics,
bubble coalescences appear and the biphase system is in a transition
regime. In the third region, stability is totally lost; an air jet domi-
nates the bubbling dynamics and the biphase system is random.
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Fig. 6. Phase space for low (A), moderate (B), and high (C) flow rate for the acoustic case, in which � = 10, 1, 9, respectively, and low (D), moderate (E), and high (F) for
the pressure case, in which � = 1, 4, 1, respectively.

Recently Al-Masry et al. (2007) calculated the standard devia-
tion (�) of the acoustic and differential pressure signals recorder
in air–water system. Al-Masry et al. used a Perspex bubble column
with superficial gas velocities of 0.009–0.094ms−1 in a gas distribu-
tor with 85 holes of 1mm diameter equally distributed. They found
two transition points at 176 and 264mlmin−1 for the acoustic and
at 148 and 232mlmin−1 for the differential pressure fluctuations;
in both cases the standard deviation increased monotonically when
the superficial gas velocity was incremented. In our study the � also
show two transition points and a similar behavior (Fig. 10).

Experiments on bubble production in only marginally different
experimental systems often show markedly different results owing
to differences in tank sizes, injection systems, and the location and
type of measurement systems. There are several aspects to consider
in interpreting the present results in relation to similar work in the
literature. Firstly, in the work of Liu (2003) the pressure transducer
probe was placed in the liquid near to the nozzle. Although such a
system is subject to noise (liquid movement, wake influence, etc.), in
comparing Liu's results with ours (where the pressure transducer is

located in capillary base and free of such noise), the behavior is very
similar in general. This suggests that the low-pass filter applied by Liu
(2003) was suitable. In Al-Masry et al. (2007) the differential pressure
meter was placed outside of the column, reading between two points
at the column wall. For this reason, the pressure fluctuations were
very different to those observed in Fig. 2; therefore, the standard
deviation results of Al-Masry et al. (2007) do not show the transition
points as clearly as in Fig. 10.

Secondly, when Cieslinski andMosdorf (2005) applied the chaotic
technique to acoustic as well as laser signals, they obtained the
maps of chaotic attractors for several volume flow rates (42, 125,
and 233mlmin−1) in which all attractors displayed chaotic charac-
ter. The three regions of Liu (2003) and the present study were not
observed. This may be because the hydrophone in Cieslinski and
Mosdorf's case was very close (1 cm) to the bubble formation point,
for bubble diameters in the order of several millimeters. Hence, the
hydrophone could have influenced the bubble formation; unlike the
present signals (Fig. 2), their acoustic signals showed very signif-
icant variability, indicating they were influenced by both acoustic
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Fig. 7. Recurrence plots for low (A), moderate (B), and high (C) flow rates for pressure signals; � = 1 for each flow rate.

Fig. 8. Recurrence plots for low (A), moderate (B), and high (C) flow rates for acoustic signals; � = 10, 4, 9, respectively.

and pressure–fluid dynamical phenomena. In addition they did
not observe bubble coalescence for volume flow rates less than

233mlmin−1; in the present study this air flow rate is located in
Region II in bubbles coalescences occur.
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Fig. 9. Correlation dimension for the acoustic and pressure cases; the delay time
for each point is noted next to each data point.

Fig. 10. Standard deviation for acoustic and pressure cases.

Thirdly, the saturation value of embedding dimension was not
reached for moderate air flow rates for the acoustic signals. This may
be because of bistability (in which two stable periodic regimes ex-
ist for the same air flow rate) in Region II. Consequently, the proper
estimation of the correlation dimension is difficult. However, to con-
firm this speculation a future detailed study is necessary.

5. Conclusions

Experiments were performed on both the acoustic and pressure
signals produced by bubbles formed from an underwater nozzle. The
data were analyzed by a comprehensive set of spectral and nonlinear
dynamical systems techniques. The present study of both acoustic
and pressure signals showed that the chaos appeared in different
regimes and was manifested in different ways in the acoustic and
pressure signals. The use of different time delays for the chaotic
analysis of acoustic and pressure signals was found necessary and
in the case of moderate air flow rates an appropriate time delay
could not be found. The acoustic signals offer data primarily on the
bubble size while the pressure signals offer data primarily on the

bubble production rate. The present results are in good agreement
with the work of Liu (2003) for the pressure case. It appears that
dynamical systems analyses give different results for acoustic and
pressure signals, despite attempts to optimize the analyses, possibly
owing to the dramatic (100X) difference in timescales.

The present results suggest that chaos need not be manifested
in the bubble size and bubble production rate simultaneously or in
exactly the same regime. This is consistent with the well-known ob-
servation that changes in air flow rate can affect bubble size and bub-
ble production rate to different extents in different air flow regimes
(Clift et al., 1978).

A first conclusion is that caution should be exercised in analyzing
either acoustic or pressure signals in isolation, and that simultaneous
measurement of both are ideal. However, a second, more promis-
ing conclusion is that acoustic and pressure measurements could be
used to probe different aspects of a gas sparging system. For exam-
ple, chaos in the acoustic signal could indicate a broadening of the
bubble size distribution, which has relevance for the local gas–liquid
mass transfer co-efficient, while chaos in the pressure signal could
indicate the overall multiphase flow has become turbulent, which
has implications for the overall transport properties of the flow. For
this application of acoustic-pressure measurement to be developed,
further careful chaotic studies of both acoustic and pressure signals
will be necessary. Owing to the very large difference in timescales,
careful thought will be required into new ways to process the data.

Notation

d embedding dimension, dimensionless
D2 correlation dimension, dimensionless
f0 frequency, Hz
P∞ absolute liquid pressure, Nm−2

Q flow rate, mlmin−1

r radius of dimension ball
R0 equivalent bubble radius, m

Greek letters

� specific heats ratio, dimensionless
� closeness, %
� heaviside step function
� liquid density, Kgm−3

� time delay, dimensionless
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